Flux et facteurs d'émission en fonction du temps des composés organiques volatils provenant du lisier de porc et des digestats solides/liquides

E. Roth, C. Collez, P. Michonneau, A. Chakir

Points forts

- Les digestats solides sont très émissifs après épandage par rapport aux digestats liquides.
- Deux jours après l'épandage, les digestats solides émettent des flux plus faibles que les digestats liquides.
- Les émissions d'acide acétique sont inhibées quelques heures après l'épandage d'engrais liquides.

Résumé

L'épandage de digestats sur les cultures entraîne des émissions de polluants atmosphériques.

Parmi ceux-ci, les composés organiques volatils (COV) contribuent non seulement aux émissions odorantes, mais jouent également un rôle clé dans la formation d'ozone troposphérique et la génération d'aérosols organiques secondaires (AOS).

L'objectif de cette étude était de mesurer les émissions de COV sur 10 jours après l'épandage de lisier de porc brut et de divers digestats liquides et solides obtenus à partir de différents matériaux d'entrée, en utilisant une chambre de flux et un PTR-ToF-MS pour les mesures de COV.

Une formule moléculaire a été attribuée à 63 composés détectés par PTR-ToF-MS dans une plage m / z de 33,033 à 137,13.

Parmi les composés identifiés, 25 étaient des composés oxygénés, 11 des hydrocarbures insaturés, 11 des aromatiques, 10 des composés organo-azotés et 6 des composés organo-soufrés. Immédiatement après l'épandage, les flux totaux variaient de 119 à 2543 μ g/m 2 /h.

Ces émissions initiales étaient transitoires et principalement associées au dégazage de l'engrais/conditionneur.

Sur la période de 10 jours, les facteurs d'émission totaux de COV étaient similaires pour tous les engrais/conditionneurs, se situant en moyenne autour de 7500 µg/m² · à l'exception du digestat solide issu de la méthanisation végétale, qui présentait des niveaux d'émission 3 à 4 fois plus élevés.

L'acétone et l'acide acétique étaient les principaux produits émis. Globalement, les résultats indiquent que la phase physique et les matières premières influencent significativement la nature, les flux et les facteurs d'émission des COV.

Les émissions d'hydrocarbures insaturés ont été favorisées par les digestats de lisier de porc. L'acide formique, l'acide acétique, l'acétaldéhyde, l'acétone et C3H6O2 ont été temporairement inhibés pendant plusieurs heures à un jour après l'épandage avant d'augmenter à nouveau, probablement en raison de la solubilisation dans la phase liquide de l'engrais.

Enfin, les digestats solides et liquides issus de la digestion anaérobie du fumier mélangé à des plantes ont l'impact le plus élevé en termes de formation d'ozone troposphérique, tandis que le potentiel de formation de SOA est à peu près le même pour tous les engrais/conditionneurs.

Résumé graphique

Introduction

Les émissions de composés organiques volatils (COV) proviennent de nombreuses sources anthropiques telles que l'industrie, le trafic, le secteur résidentiel et l'agriculture. Cette étude se concentre sur les COV émis par les activités agricoles, qui représentent 40 % des émissions en France.

Parmi les COV agricoles, 8 % proviennent des engrais et des amendements organiques (Citepa, 2023). Les fumiers sont utilisés depuis longtemps comme engrais en raison de leur teneur élevée en azote, phosphore et potassium. Ils sont considérés comme une alternative naturelle aux engrais chimiques pour une agriculture durable (Diacono et Montemurro, 2010 ; Adnane et al., 2025).

Au cours de la dernière décennie, de nombreuses usines de méthanisation ont été construites pour recycler les effluents d'élevage et les biodéchets, produisant à la fois du biogaz et des digestats.

La digestion anaérobie du fumier augmente la concentration en nutriments minéraux aux propriétés fertilisantes (Orzi et al., 2018 ; Rigby et Smith, 2013). Les digestats sont couramment appliqués comme engrais ou amendements du sol en raison de leurs avantages agronomiques (Van Midden et al., 2023 ; Villarino et al., 2025).

Cependant, l'épandage du digestat entraîne l'émission d'ammoniac, de particules fines, de gaz à effet de serre tels que CH_4 et N_2O , et de composés organiques volatils (COV). Alors que les impacts environnementaux de l'épandage du digestat ont été largement étudiés, notamment en termes d'émissions de gaz à effet de serre (méthane et protoxyde d'azote) et de rejet d'ammoniac (Vázquez-Rowe et al., 2015 ; Tiwary et al., 2015 ; Wolf et al., 2014), il existe relativement peu d'études sur les émissions de COV associées à l'épandage du digestat (Abis et al., 2018 ; Potard et al., 2017 ; Orzi et al., 2018 ; Monard et al., 2020). Pourtant, les COV sont des précurseurs majeurs de la pollution photochimique dans la troposphère.

Ils contribuent à la formation d'ozone troposphérique en perturbant le cycle du NO_x et jouent un rôle crucial dans la génération d'aérosols organiques secondaires (AOS) (Atkinson, 2000 ; Ziemann et Atkinson, 2012 ; Ciuraru et al., 2021 ; Jain et al., 2023).

L'ozone troposphérique agit comme un gaz à effet de serre, entraînant un forçage radiatif positif, tandis que les AOS dégradent la qualité de l'air (Pascal et al., 2013) et influencent le bilan radiatif de la Terre par l'absorption de la lumière, la diffusion et les modifications des propriétés des nuages (Hodzic et al., 2016; Zhu et al., 2019).

Les sols émettent naturellement des COV en raison de l'activité fongique et microbienne (Peñuelas et al., 2014), et l'ajout de résidus organiques peut altérer l'activité microbienne, modifiant ainsi la composition chimique et la quantité des émissions de COV.

Au cours des deux dernières décennies, une attention particulière a été accordée aux émissions de COV provenant de l'épandage de fumier animal, en particulier de fumier de porc, bien que moins d'études se soient concentrées sur le fumier de porc méthanisé (Ni et al., 2012 ; Parker et al., 2013 ; Feilberg et al., 2010, Feilberg et al., 2011, Feilberg et al., 2015 ; Liu et al., 2018 ; Orzi et al., 2018 ; Rincón et al., 2019 ; Monard et al., 2020 ; Haider et al., 2024).

Après l'épandage de lisier de porc, des odorants clés tels que le 4-méthylphénol, le H_2S et le méthanethiol ont été identifiés (Feilberg et al., 2011). Parker et al. (2013) ont mesuré les flux d'émission de diverses familles de composés – dont des acides gras, des composés aromatiques et des composés soufrés – à partir de sols fertilisés au lisier de porc sur 24 h, observant une décroissance de premier ordre pour les COV. Potard et al. (2017) ont signalé des émissions de méthanol et d'acétonitrile après l'épandage de lisier de porc brut et méthanisé.

Dans l'ensemble, les recherches suggèrent que l'application de lisier de porc double environ les émissions de COV par rapport au sol non amendé, tandis que le sol amendé avec du digestat peut même émettre moins de COV que les parcelles témoins (Potard et al., 2017). Orzi et al. (2018) ont constaté que la digestion anaérobie réduit les impacts des odeurs dus à la dégradation de la matière organique. Abis et al. (2018) ont fourni une liste exhaustive des flux de COV pour 50 composés dans les sols amendés avec différents déchets organiques, notamment le lisier de porc et le lisier de porc méthanisé, identifiant l'acétone, la butanone et l'acétaldéhyde comme les composés les plus émis.

Monard et al. (2020) ont surveillé les flux d'émission d'acétone, de 2-pentanone, de sulfure de diméthyle, de phénol et de méthanol sur 60 jours dans un sol nu et un sol amendé avec du lisier et du lisier méthanisé. Récemment, Haider et al. (2024) ont analysé de manière exhaustive les émissions provenant du fumier brut de vache, de cheval, de mouton et de chèvre, identifiant jusqu'à 257 composés.

La plupart des études existantes se concentrent sur les flux initiaux de COV immédiatement après l'épandage du lisier ou dans l'espace de tête du lisier pur. Cependant, seules quelques études ont fourni des mesures de flux en fonction du temps après l'épandage de digestats de lisier de porc méthanisés (Parker et al., 2013 ; Potard et al., 2017 ; Monard et al., 2020).

La présente étude visait à mesurer les émissions de COV sur 10 jours suivant l'épandage de lisier de porc brut et de digestats solides et liquides issus de la méthanisation avec différents intrants.

L'objectif était d'évaluer comment la phase physique et les intrants de la méthanisation influencent la libération de COV, à la fois qualitativement et quantitativement, après épandage au sol.

Des expériences en laboratoire ont été menées en utilisant une chambre de flux dynamique remplie de sol, sur laquelle les engrais suivants ont été appliqués : lisier de porc brut (PM), digestat liquide issu de la méthanisation humide de lisier brut mélangé à des intrants végétaux (PM-LD), digestat solide issu de la méthanisation humide de lisier brut mélangé à des intrants végétaux (PM-SD), digestat liquide issu de la méthanisation sèche d'intrants végétaux (PLANT-LD) et digestat solide issu de la méthanisation sèche d'intrants végétaux (PLANT-SD).

Les concentrations de COV ont été mesurées en temps réel à l'aide d'un spectromètre de masse à temps de vol de réaction de transfert de protons (PTR-ToF-MS) et converties en flux instantanés ($\mu g/m^2$) à des intervalles de temps spécifiques après l'application. Les facteurs d'émission ($\mu g/m^2$) ont ensuite été calculés en fonction des variations de flux sur la période de 10 jours.

Les implications atmosphériques en termes de formation d'aérosols secondaires et de potentiel d'ozone photochimique ont été comparées pour différents engrais/conditionneurs.

Extraits de section

✓ Chambre de flux

Une chambre dynamique cylindrique en Téflon, de 8,5 cm de haut et 7 cm de diamètre, a été utilisée pour mesurer les flux d'émission. Une masse de 186 g de sol a été compactée sur une profondeur de 5 cm afin d'obtenir une densité de sol native de 1,1 g/cm³ · De l'air synthétique pur a été introduit par une pointe horizontale positionnée au-dessus de la surface du sol afin de balayer la surface et d'évacuer les composés volatils hors de la chambre pour analyse par PTR-ToF-MS.

Le flux d'émission d'un composé libéré à partir d'un sol nu ou amendé par unité de surface, F...

✓ Affectation VOC

Soixante-six pics de masse présentant des flux initiaux dépassant la limite de quantification (LQ) ont été intégrés entre m / z 33,033 et 137,13. Une formule moléculaire brute a été attribuée à 64 composés en fonction de leur masse moléculaire protonée (MH $^+$). Parmi ceux-ci, 25 étaient des composés oxygénés, 11 des hydrocarbures insaturés, 10 des composés organo-azotés, 11 des composés aromatiques et 6 des composés organo-soufrés. Les fragments et les valeurs de MH $^+$ associés aux rapports m / z , ainsi que les références bibliographiques pertinentes pour ces composés, sont présentés.

Conclusion

Cette étude met en évidence la complexité et la diversité des émissions de composés organiques volatils (COV) provenant de divers engrais/conditionneurs, notamment ceux issus du lisier de porc et des digestats issus de la méthanisation de différents intrants.

Une formule brute a été attribuée à 63 composés en fonction de leur masse moléculaire protonée (MH+).

Parmi ceux-ci, 25 étaient des composés oxygénés, 11 des hydrocarbures insaturés, 10 des composés organo-azotés, 11 des composés aromatiques et 6 des composés organo-soufrés.

Flux d'émissions totaux...

Déclaration de contribution d'auteur CRediT

E. Roth: Rédaction – ébauche originale, validation, supervision, administration de projet, méthodologie, investigation, acquisition de financement, analyse formelle, conservation des données, conceptualisation. **C. Tape**: Investigation, conservation des données. **P. Michonneau**: acquisition de financement, conceptualisation. **A. Chakir**: Rédaction – révision et édition, validation, méthodologie, acquisition de financement, conservation des données, conceptualisation.

Déclaration d'intérêts concurrents

Les auteurs déclarent avoir des intérêts financiers et des relations personnelles susceptibles d'être considérés comme des conflits d'intérêts potentiels : Estelle Roth indique que le soutien financier a été fourni par ATMO Grand Est. Si d'autres auteurs sont présents, ils déclarent n'avoir aucun conflit d'intérêts financier ni relation personnelle connu susceptible d'avoir influencé les travaux présentés dans cet article.

Remerciements

Les auteurs remercient le Fond de Dotation Air d'ATMO Grand EST et Marie Angot pour leur soutien technique.

Références (60)

L. Abis et al.

<u>Profils des émissions de composés organiques volatils provenant des sols amendés avec des déchets organiques</u> Sci. Total Environ.

(2018)

I. Adnane et al.

<u>Du déchet à la ressource : stratégies de valorisation du biogaz et du digestat pour une énergie et une agriculture durables</u> Biomasse Bioénergie (2025)

D. Asensio et al.

Taux d'échange de CO2 et de COV interannuels et intersaisonniers dans une forêt méditerranéenne de chênes verts en réponse à une sécheresse expérimentale

Biochimie des sols

(2007)

R. Atkinson

Chimie atmosphérique des COV et des NOx

Atmos. Environ.

(2000)

• K. Buhr et al.

<u>Analyse des composés aromatiques volatils par spectrométrie de masse à réaction de transfert de protons : schémas de fragmentation et discrimination entre composés isobares et isomères</u>

Int. J. Mass Spectrom.

(2002)

RG Derwent et al.

Formation d'aérosols organiques secondaires à partir d'un grand nombre de composés organiques réactifs fabriqués par l'homme

Sci. Total Environ.

(2010)

M. Gueneron et al.

Modèles de fragmentation PTR-MS des hydrocarbures de l'essence

Int. J. Mass Spectrom.

(2015)

MJ Hansen et al.

Prédiction multivariée des odeurs issues de la production porcine basée sur la mesure in situ des odorants

Atmos. Environ.

(2016)

ME Jenkin et al.

Potentiels photochimiques de création d'ozone pour les composés organiques volatils : rationalisation et estimation Atmos. Environ.

(2017)

• E. Kari et al.

Distribution des ions produits PTR-ToF-MS et dépendance à l'humidité des composés organiques volatils biogéniques Int. J. Mass Spectrom.

(2018)